Author Affiliations
Abstract
1 College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
2 Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China
3 Department of Computer Science, University of Liverpool, Liverpool, UK
4 College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
5 Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China

This paper proposes a micro-LED backlight module with a distributed Bragg reflector (DBR) structure to achieve excellent micro-LED backlight module quality and uses deep reinforcement learning (DRL) architecture for optical design. In the DRL architecture, to solve the computing environment problems of the two extreme structures of micro-scale and macro-scale, this paper proposes an environment control agent and virtual-realistic workflow to ensure that the design environment parameters are highly correlated with experimental results. This paper successfully designed a micro-LED backlight module with a DBR structure by the abovementioned methods. The micro-LED backlight module with a DBR structure improves the uniformity performance by 32% compared with the micro-LED backlight module without DBR, and the design calculation time required by the DRL method is only 17.9% of the traditional optical simulation.

Photonics Research
2022, 10(2): 02000269
Author Affiliations
Abstract
1 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Strain regulation as an effective way to enhance the photoelectric properties of two-dimensional (2D) transition metal dichalcogenides has been widely employed to improve the performance of photovoltaic devices. In this work, tensile strain was introduced in multilayer MoS2 grown on GaN by depositing 3 nm of Al2O3 on the surface. The temperature-dependent Raman spectrum shows that the thermal stability of MoS2 is improved by Al2O3. Theoretical simulations confirmed the existence of tensile strain on MoS2 covered with Al2O3, and the bandgap and electron effective mass of six layers of MoS2 decreased due to tensile strain, which resulted in an increase of electron mobility. Due to the tensile strain effect, the photodetector with the Al2O3 stress liner achieved better performance under the illumination of 365 nm wavelength, including a higher responsivity of 24.6 A/W, photoconductive gain of 520, and external quantum efficiency of 8381%, which are more than twice the corresponding values of photodetectors without Al2O3. Our work provides an effective technical way for improving the performance of 2D material photodetectors.
Photonics Research
2020, 8(6): 06000799
You Wu 1,2Zhiwen Li 1,2Kah-Wee Ang 3Yuping Jia 1,2[ ... ]Dabing Li 1,2,7,*
Author Affiliations
Abstract
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
4 Shenzhen Castle Security Technology Co., Ltd., Shenzhen 518000, China
5 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
6 e-mail: liuxinke@ciomp.ac.cn
7 e-mail: lidb@ciomp.ac.cn
With the increasing demand for high integration and multi-color photodetection for both military and civilian applications, the research of multi-wavelength detectors has become a new research hotspot. However, current research has been mainly in visible dual- or multi-wavelength detectors, while integration of both visible light and ultraviolet (UV) dual-wavelength detectors has rarely been studied. In this work, large-scale and high-quality monolayer MoS2 was grown by the chemical vapor deposition method on transparent free-standing GaN substrate. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors was demonstrated using common semiconductor fabrication technologies such as photolithography, argon plasma etching, and metal deposition. High performance of a 280 nm and 405 nm dual-wavelength photodetector was realized. The responsivity of the UV detector reached 172.12 A/W, while that of the visible detector reached 17.5 A/W. Meanwhile, both photodetectors achieved high photocurrent gain, high external quantum efficiency, high normalized detection rate, and low noise equivalent power. Our study extends the future application of dual-wavelength detectors for image sensing and optical communication.
Photonics Research
2019, 7(10): 10001127

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!